Integrating birth cohorts

Maribel Casas

CREAL, 4th March 2016

Birth Cohorts

- ➤ Many birth cohorts in Europe with shared aim to examine early determinants of health by following participants from the intrauterine period, through childhood and adolescence, into adulthood.
- Individual birth cohort studies have contributed importantly to understanding the environmental causes of childhood disease.
- Collaboration needed to reach full potential...

Collaboration – Why?

1. Improving causal inference

- Replication of findings
- Comparison of results
- Increased sample size: rare exposures/outcomes, interactions...
- Exposure diversity (e.g. specific diets)

2. Understanding inequalities

- Contrast needed in prevalence of disease, risk factors and behaviors, and policies
- 3. Greater and more efficient use of cohorts
 - Shared expertise, improved methodology, use of data otherwise not used
- 4. Coordinated (fast) response to important policy questions
 - E.g. New chemicals

Environment

Health

ENRIECO

CHICOS

ENRIECO

Environmental Health Risks in European Birth Cohorts

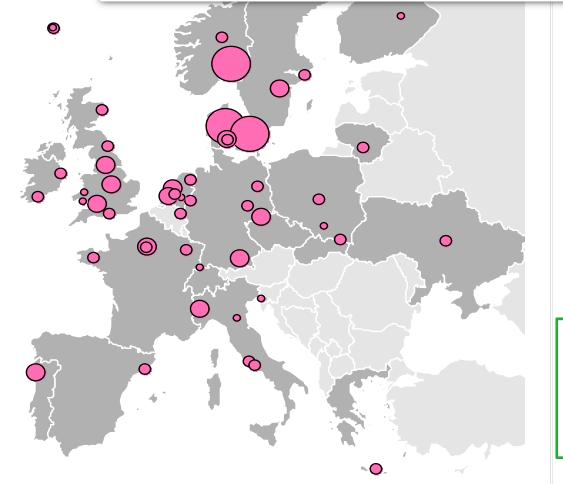
- > 2009-2011
- > Focus on environmental contaminants
- ➤ 35+ cohorts
- Coordinator: Mark Nieuwenhuijsen, CREAL

CHICOS

Developing a Child Cohort Research Strategy for Europe

- **>** 2010-2013
- Wider focus
- ➤ 70+ cohorts
- Coordinator: Martine Vrijheid, CREAL

Coordination - How?


- Inventory and review of birth cohort data in Europe
- 2. Pooling of cohort data
- 3. Recommendations for research action
- 4. Evaluation of contribution to policy

Inventories: www.birthcohorts.net

More than 70 cohorts, following more than 500,000 children and parents

Sample size (N of children)

- <1000 (N=12)
- 0 1000-4999 (N=28)
- 5000-19,999 (N=13)
- 20,000-100,000 (N=3)

Larsen et al, Paediatr Perinat Epidemiol 2013 (CHICOS)

Vrijheid et al, EHP 2011 (ENRIECO)

European Birth Cohorts

- ➤ 19 countries represented majority of cohorts located in Northen and Western Europe
- ➤ 1 cohort enrolled participants before pregnancy, 34 during pregnancy and 21 at birth
- The oldest cohort enrolled participants from in 1982 to 1984
- Most cohorts had completed several waves of follow-up of the children at different ages

Inventory: www.birthcohorts.net

Home | About Birthcohorts.net | Partners | Contact information | Disclaimer |

Birthcohorts.net

70 birth cohorts

Inventory of Birth Cohorts

Register/edit cohort

Inventory of ENRIECO

European birth cohorts with data on environmental contaminant exposure

Which cohorts are included?

- Cohorts started in pregnancy or at least at birth
- Cohorts with at least one year of follow-up
- Cohorts with at least 300 motherchild pairs

Inventory of Birth Cohorts

Cohort information can be retrieved in the following ways:

A. View the complete inventory of Birth Cohorts Click here

B. Search by selecting criterias below

(This performs a search for cohorts with information on selected exposures, outcomes, biological samples or health and development) Please, be aware that this search may take up to a few minutes.

1. Choose grou	up	▼	
Search			

C. Searc	h hi	/ гол	IOD
C. Scarc	11 0)	/ 1 6 4	IVIII

Africa Search

Larsen et al. Paediatr Perinat Epidemiol 2013

Identification

Cohort, name

Amsterdam Born Children and their Development

Cohort, abbreviation

ABCD

Cohort, country

Netherlands (Nederland)

Cohort, website

http://www.abcd-studie.nl

Cohort, facebook-site

Key reference

van Eijsden M, Vrijkotte TG, Gemke RJ, van der Wal MF. Cohort - e-mail address profile: the Amsterdam Born Children and their Development (ABCD) study. Int J Epidemiol. 2011 Oct;40(5):1176-86.

Date of filling in this questionnaire:

2011-10-11

Main aim of cohort

Basic description

Prospective cohort study on the association between lifestyle, psychosocial conditions, and nutritional status during pregnancy, and the childs health at birth (birth weight, pregnancy duration, perinatal mortality) and in later life (growth, physical development, behhaviour and cognitive functioning).

Recruited number of:

6161 children / 8266 mothers / 0 fathers / 0 grand parents / 0 other family members

Approximate proportion of source population included

0

Source population

Region-based

Principal investigator(s)

- name

Manon van Eijsden; Tanja G.M. Vrijkotte

e-mail address

abcd@ggd.amsterdam.nl

institution address

Municipal Health Service Amsterdam; Academic Medical Centre/

University of Amsterdam

Contact person(s)

- name

Eva M. Loomans

abcd@ggd.amsterdam.nl

institution address

$\ensuremath{\mathbf{0}}$ Questionnaire or registry data and biological samples - children

Children

Birth outcomes	
Birth weight	X
Birth length	
Gestational age at birth	X
Apgar score	X
Congenital malformations	X
Stillbirth (>= 22 weeks)	X
Child's sex	X

Child exposures	Child age (years) at assessment																		
	<1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Childcare attendance																			
Passive smoking	X					X													
Tobacco smoking																			
Alcohol consumption																			
Substance abuse																			
Breast feeding	X	Χ	X																
Diet	X					X													
Physical activity						Х													
Medicine intake	X					X													
Vaccinations																			

Child development and health	Child age (years) at assessment																		
	<1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Renal ultrasound																			
Brain MRI																			
Congenital anomalies	X					Χ													

Maternal Exposures	Timing of assessment								
	Pre-pregnancy	First trimester	Second trimester	Third trimester	Post pregnancy				
Tobacco smoking	X	X	X	X	X				
Passive smoking	X	X	X	X	X				
Alcohol consumption	X	X	X	X	X				
Binge drinking	X	X	X	X	X				
Substance abuse	X	X	X	X	X				
Medicine intake	X	X	X	X	X				
Diet	X	X	X	X					
Dietary supplements	X	X	X	X					
Coffee drinking	X	X	X	X					
Stress	X	X	X	X	X				
Occupational hazards	X	X	X	X	X				
Outdoor air pollution					X				
Indoor contaminants					X				
Physical activity	X	X	X	X					
Heavy lifts	X	X	X	X					
Education	X	X	X	X	X				
Income	X	X	X	X	X				
Occupation	X	X	X	X	X				
Single parenthood	X	X	X	X	X				
Weight	X	X	X	X	X				
Height	X	X	X	X	X				

Maternal health			Timing of assessmer	nt	
	Pre-pregnancy	First trimester	Second trimester	Third trimester	Post pregnancy
Preeclampsia	X	X	X	X	
Diabetes	X	X	X	X	X
Mental health	X	X	X	X	X
Cardio-vascular disease	X	X	X	X	X
Cancer	X	X	X	X	X
Autoimmune disease	X	X	X	X	X
Musculo-skeletal disease	X	X	X	X	X
Asthma/allergy	X	X	X	X	X
Infectious disease	X	X	X	X	X
Blood pressure	X	X	X	X	
Low density lipoprotein					
High density lipoprotein					
Total cholesterol					
Insulin					
Glucose					
Triglyceride levels		X	X	X	
Other blood measurements		X	X	X	

Fever

Inventory: www.birthcohorts.net

Home | About Birthcohorts.net | Partners | Contact information | Disclaimer |

Birthcohorts.net

70 birth cohorts

Inventory of Birth Cohorts

Register/edit cohort

Inventory of ENRIECO

European birth cohorts with data on environmental contaminant exposure

Which cohorts are included?

- Cohorts started in pregnancy or at least at birth
- Cohorts with at least one year of follow-up
- Cohorts with at least 300 motherchild pairs

Inventory of Birth Cohorts

Cohort information can be retrieved in the following ways:

A. View the complete inventory of Birth Cohorts Click here

B. Search by selecting criterias below

(This performs a search for cohorts with information on selected exposures, outcomes, biological samples or health and development) Please, be aware that this search may take up to a few minutes.

 Choose g 	roup	▼
Search		

_	_		
•	Search	hv	region
٠.	ocui cii		. cg.o

Africa Search

Larsen et al. Paediatr Perinat Epidemiol 2013

www.birthcohortsenrieco.net

Home | About ENRIECO

37 birth cohorts

ENRIECO

Register your Birth Cohort

Inventory of ENRIECO Cohorts

Cohort information can be retrieved in the following two ways:

A. View the complete inventory of Enrieco Cohorts

B. Search by selecting one or two of the criterias below

Select a cohort	
All Cohorts	•
Select exposure or outcome filter	
All Exposures	~
OR	

Search

All Outcomes

How to search?

B. Cross-reference

Refined search results will be presented by choosing one or combining several specific datatypes collected in the cohorts. The criterias are specific cohorts, exposures and outcomes.

Edited: 01-06-2010

Home | Print page | Top of page

Vrijheid et al, EHP 2011

Exposures

Cohort	Air pollution outdoor	Air pollution indoor	Water contamination	Allergens and biological organisms	Metals ^b	Pesticides ^c	Persistent organic pollutants	Other chemical exposures ^d	Radiations	Passive smoking ^e	Noise	Occupation
ABCD	Х					Х			χg	Χ		Х
ALSPAC		Х		X	Х	X	Χg		X	Χ	Χ	X
ArcRisk-Norway					Х		X	χ^g		Χ		X
BAMSE	Χ	Х		X						Χ		X
BiB	Χ		X									X
Co.N.ER	χg	Χ		X						Χ	Х	X
Czech	Χ									Χ		X
DARC	Χ	Х		X						Χ		X
DNBC	χg	Χ		X		Х	X		X	Χ		X
Duisburg	Х	Х	χ^g	X	Х		X	X		Χ		X
EDEN	Χ	Х	χg		Χ			X	X	Χ		X
ELFE	χg	Χg	Χg	Χg	χg	χ_g	Χg	χ_g	χg	χ_g		χg
Faroes					Χ	χ_g	X	χ_g		Χ		X
FLEHS I	Х	Χ		X	Х	Х	X			Χ		X
GASPII	X	X		X						Χ	X	
Generation R	Х			X		Х	Χg	Х		Χ	Χ	Х
Generation XXI				X						Χ		X
GINIplus	Х	Х		X						Χ		
HUMIS ^f	Χ	X	X	X	χg	X	X	X	X	Χ		X
INMA old	Χ	Х	X	X	χg	X	X	X	X	Χ	Χ	X
INMA new	Χ	X	X	X	X	X	X	X	X	Χ	Χ	X
INUEND0					χ^g	χ^g	Χg	χ^g		Χ		X
KANC	Х		X							Χ	χ_g	X
KOALA		Х	X	X					Χg	Χ	X	X
Kraków	Χ	Χ		X	Χ	Χ	X	X		Χ		X
Leicester	Χ	Χ		X						Χ		X
LISAplus	Χ	Χ		X						Χ	χ_g	
LUKAS		Х		X	Х	X	X	Χg		Χ		X
MAS		Χ		X						Χ	X	X
MoBa	χg	Χ	X	X	χ^g	Х	χ^g	X	Х	Χ	Х	Х
NINFEA	χg	χg		Χg		χ_g		Χg	χg	χ_g	χ_g	χg
PARIS	Х	Х	X	X						Χ		Х
PCB cohort		Χ			Χ	Х	Χ	χ^g		Χ		Х
PELAGIE		Х	X		Χ	X	Χ	X		Χ		Х
PIAMA	Х	Х		X						Χ		
REPRO_PL	χg			X	Χ		Х			Χ	Χ	Х
RHEA	Х	Χ	X	X	Χ	Х	χ^g	χ^g	Х	Χ	Χ	X

Exposure Biomarkers

Cohort	Metals	Persistent organic pollutants	Other pesticides	Tobacco smoking	Other chemicals
ALSPAC	As, Cd, Hg, Mn, Pb, Se, b TMS	PFCs ^b	_	Cotinine	_
ArcRisk-Norway	As, Cd, Co, Hg, Mb, Mn, Pb	Chlordane, DDT/DDE, HCB, PCBs	_	_	Planned
BAMSE	_	_	_	Cotinine	_
Czech	_	_	_	Cotinine	PAHs
DNBC	_	PFCs	_	_	_
Duisburg	Cd, Hg, Pb, Se	DDT/DDE, HCB, b HCH, PCBs, PCDDs, PCDFs, PFCs	_	Cotinine ^b	BPA, phthalates
EDEN	B, Cd, Mn, Hg, Pb	_	_	Cotinine	Phthalates, phenols (including BPA)
ELFE	Al, b As, b Cd, b Hg, b Pbb	BFRs, ^b organochlorines, ^b PFCs, ^b PCBs, ^b PCDDs, ^b PCDFs ^b	Organophosphates, ^b pyrethroids ^b	Cotinine ^b	BPA, b phthalatesb
Faroes	Hg, Pb, Se	BFRs, b chlordane, DDT/DDE, dieldrin/ endrin, heptachlor, HCB, β-HCH, mirex, organometallic compounds, PCBs, PFCs, b toxaphene	. –	_	BPA, ^b phthalates ^b
FLEHS I	Cd, Pb	DDT/DDE, dioxin-like compounds, HCB, PCBs	_	_	_
Generation R	_	Organochlorines ^b	Organophosphates	_	BPA, phthalates
GINIplus	_	_		Cotinine	_
HUMIS	Hg, ^b Pb ^b	BFRs, DDT/DDE, HCB, HCH, mirex, PCBs, PCDDs, PCDFs, PFCs, toxaphene	_	_	Phthalates
INMA old	Hg, Pb, ^b TMS ^b	Aldrin/dieldrin/endrin, BFRs, DDT/DDE, endosulfan, lindane, methoxychlor, mirex, HCB, HCH, PCBs	_	Cotinine	Phthalates, phenols (including BPA)
INMA new	Hg, Pb, TMS ^b	BFRs, DDT/DDE, HCB, HCH, PCBs	_	Cotinine	Phthalates, phenols (including BPA)
INUENDO	Cd, b Hg, b Pbb	BFRs, b DDT/DDE, HCB, b PCBs, PFCsb	_	_	BPA,b phthalatesb
Kraków	Cd, Hg, Pb	· · · · -	_	Cotinine	Phthalates, PAHs, benzo[a]pyrene- adducts
LISAplus	_	_	_	Cotinine	_
LUKÁS	As, Cd, Hg, Pb, Se	BFRs, DDT/DDE, organometallic compounds, PCBs, PCDDs, PCDFs, polychlorinated naphthalene	_	_	Phthalates ^b
MAS	_	_	_	Cotinine	_
MoBa	Planned	BFRs, ^b DDT/DDE, ^b PCBs ^b	Organophosphates	_	BPA, phthalates
NINFEA	_	_	_	_	
PCB cohort	Hg, Pb	DDT/DDE, HCB, HCH, PCBs, PFCsb	_	_	Phthalates ^b
PÉLAGIE	Hg	Aldrin, BFRs, DDT/DDE, dieldrin/endrin, heptachlor, HCB, PCBs	Acetochlor, alachlor, metolachlor, organophosphorus, propoxur, triazines	_	Phthalates
REPRO_PL	Cd, Hg, Pb, Se, Zn, Cu	PCBs, PCDDs, PCDFS	_	Cotinine	PAHs (1-hydroxypyrene)
RHEA	As, Cd, Hg, Mn, Pb	DDT/DDE, b HCB, b PCBs, b PCDDs, b PFCsb	_	NNAL, cotinine	Phthalates ^b

Search results of ENRIECO Cohorts

All Cohorts | Metals Exposure | No Outcomes

			Pregnancy (T = Trimester)			Birth	Postnatal (months / y = years)				
			1T	2T	ЗТ		0-6 m	7-18 m	19-60 m	5-10 y	10+ y
Cohort	Contaminant	Method									
ALSPAC	As, Cd, Pb, Mn, Hg, TMS	Cord blood	-	71	25	2865	-	(+)	18	-	8.58
ALSPAC	Cd, Pb, Hg, Se	Whole blood	р	83	83	858	- 12	:172		6.	858
Duisburg	Cd, Hg	Urine		23	220	1.0	(6)	140	13	- 2	-
Duisburg	Cd, Se	Whole blood	6.	83	83	Р	- 10	1573	.03	р	858
Duisburg	Hg	Whole blood	9	20	20	178	- 3	149	19	Р	-
Duisburg	Pb	Whole blood	-	21	220	184	×		19	117 (ch), 130 (mo)	-
Duisburg	Se	Serum	φ.	- 2	162	130	8	-	74	φ.	3.40
EDEN	В	Cord blood		20	20	400	8	1.00	12	5	250
EDEN	В	Placenta	Ψ.	- 21	- 21	700	E	-	74	9.	340
EDEN	В	Serum	0.	300	83	858	100	572	85	6	858
EDEN	Cd	Cord blood	9	20	20	805	(8)	114	19	8	-
EDEN	Cd	Serum		904	53	858	10	1172		6.	858
EDEN	Hg	Cord blood	2	2	2	700 (mo), 200 (ch)	-		ja .	2	123

Data pooling/combination studies

Evaluation of:

- Usefulness of existing inventories
- Cohort willingness and preparedness
- Ethical issues in data use
- Efforts needed to obtain data
- Comparability of data

chicos

Two approaches:

- Local analysis and subsequent meta-analysis
- Central data collection and meta- or pooled- analysis

Guidelines and recommendations

Data pooling/combination studies

YES WE CAN!!

	N Cohorts	N Subjects
Socioeconomic inequalities in preterm delivery	12	>200,000
Maternal occupation and fetal growth	12	>200,000
Fish consumption and fetal growth	20	152,000
Early infant growth and childhood asthma	31	147,000
Maternal complications during pregnancy and childhood wheezing	14	114,000
PCBs and fetal growth	15	9,000
PCBs and respiratory health	9	4,600

11 studies already published and11 more under development

Research initiatives

European Study of Cohorts for Air Pollution Effects

Early Genetics Growth/Early Genetics and Lifecourse Epidemiology

Novel tools for integrating early-life environmental exposures and child health across Europe

Enhanced exposure assessment and omic profiling for high priority environmental

Our plans for BRIDGE

Main aim: facilitate birth cohort's relationships

- Merge the ENRIECO inventory with the main birthcohort.net inventory in a unique platform and ask cohorts to update their information:
 - New platform:
 - easy to be completed by cohorts
 - easy to find the information
 - give general information about the cohort
 - Update every year
 - Promote joint analysis (guidelines, previous publications, new methodologies)
 - Create working groups on specific exposures/outcomes

Our plans for BRIDGE

- Identify new birth cohorts in Europe and invite them to join the inventory
- Up-date ENRIECO contact lists
- Newsletters to update cohorts
- Update publications, reports, recommendations

Main challenge

→Integration and Harmonization of cohort and registry data

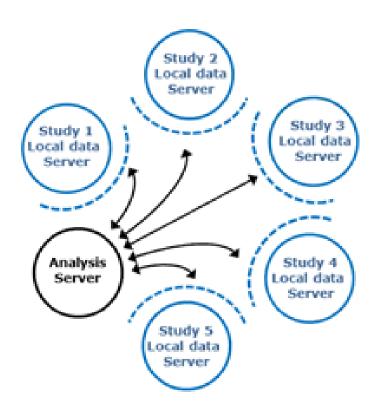
- → Barriers to cross-cohort analyses:
 - Burden on collaborators of repeatedly preparing and analysis data
 - Collaborators fear loss of ownership of the data
 - Complex data-sharing or deposition agreements are needed

Main challenges

HOME

PROJECT

REGISTRY


PARTNERS

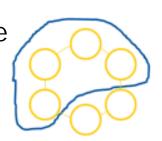
BENEFITS

GET INVOLVED

MEMBERS AREA

InterConnect: a global initiative on diabetes gene-environment interaction

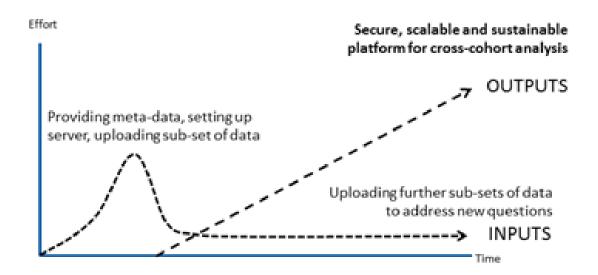
- Take the analysis to the data federated analysis.
- Data stay within the governance structure of the cohort
- Analytical instructions and non-identifying summary parameters allowed to pass between computers
- Any user with appropriate log in credentials can remotely access the analysis server to run analysis code


undertaken

InterConnect: a global initiative on diabetes gene-environment interaction

PROJECT

REGISTRY


You don't lose the controls of the data because the data is behind your local server firewall You control the access and the analyses

Consortium 1 Question A

Consortium 2 Question B

Main challenges

→ Integration and Harmonization of cohort and registry data

- 1. Already barriers to cross-cohort analyses
- 2. Consent forms anonymization
- Differences in linking routine and research data in Northern/Central vs Southern/Eastern European countries
- 4. Linkage with registries will facilitate data collection in birth cohorts (and collection of more data)

Contributors

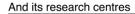
Martine Vrijheid, CREAL
Mark Nieuwenhuijsen, CREAL
Anne-Marie Nybo Andersen
ENRIECO, CHICOS partners
And all birth cohorts participants!

ENRIECO

- Website: <u>www.enrieco.org</u> (reports publically available)
- Inventory: <u>www.birthcohortsenrieco.net</u>

CHICOS

- Website: <u>www.chicosproject.eu</u> (reports publically available)
- Inventory: <u>www.birthcohorts.net</u>



Parc de Recerca Biomedica de Barcelona Doctor Aiguader, 88 08003 Barcelona (Spain)

Tel. (+34) 93 214 73 00 Fax (+34) 93 214 73 02

info@creal.cat www.creal.cat

